Post-receptor mechanisms underlying striatal long-term depression.

نویسندگان

  • P Calabresi
  • A Pisani
  • N B Mercuri
  • G Bernardi
چکیده

Extracellular and intracellular recordings were obtained from striatal neurons in a brain slice preparation in order to characterize the post-receptor mechanisms underlying striatal posttetanic long-term depression (LTD). Striatal LTD was blocked in neurons intracellularly recorded either with 1,2-bis (o-aminophenoxy)-ethane-N,N,N',N'-tetraacetic acid (BAPTA) or with EGTA, calcium (Ca2+) chelators. Intracellular injection of QX-314, a lidocaine derivative that has been shown to block voltage-dependent sodium channels, abolished action potential discharge and blocked striatal LTD. However, under this condition, striatal LTD was restored when, immediately before the delivery of the tetanus, the cell was depolarized at a membrane potential ranging between -30 mV and -20 mV by injecting continuous positive current. Nifedipine (10 microM), a blocker of voltage-dependent L-type Ca2+ channels, blocked striatal LTD. Nifedipine by itself altered neither cortically evoked EPSPs nor input resistance and firing properties of most of the recorded cells. Striatal LTD was also reduced or blocked by incubation of the slices in the presence of the following inhibitors of Ca(2+)-dependent protein kinases: staurosporine (10-50 nM), 1-(5-isoquinolinesulfonyl)-2- methylpiperazine (H-7; 10-50 microM), and calphostin C (1 microM). Our findings suggest that generation of striatal LTD requires a Ca2+ influx through voltage-dependent nifedipine-sensitive Ca2+ channels and a sufficient intracellular free Ca2+ concentration. Furthermore, this form of synaptic plasticity seems to involve the activation of Ca(2+)-dependent protein kinases. Different drugs, acting at receptor and/or post-receptor level, may affect this form of synaptic plasticity and might alter the formation of motor memory.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mechanisms for synapse specificity during striatal long-term depression.

Endocannabinoid (eCB)-mediated forms of long-term synaptic plasticity occur in several brain regions, but much remains unknown about their basic properties and underlying mechanisms. Here, we present evidence that eCB-mediated long-term depression (eCB-LTD) at excitatory synapses on medium spiny neurons in the striatum requires presynaptic activity coincident with CB1 receptor activation. This ...

متن کامل

Disrupted motor learning and long-term synaptic plasticity in mice lacking NMDAR1 in the striatum.

Much research has implicated the striatum in motor learning, but the underlying mechanisms have not been identified. Although NMDA receptor (NMDAR)-dependent long-term potentiation has been observed in the striatum, its involvement in motor learning remains unclear. To examine the role of striatal NMDAR in motor learning, we created striatum-specific NMDAR1 subunit knockout mice, analyzed the s...

متن کامل

Interneuronal Nitric Oxide Signaling Mediates Post-synaptic Long-Term Depression of Striatal Glutamatergic Synapses.

Experience-driven plasticity of glutamatergic synapses on striatal spiny projection neurons (SPNs) is thought to be essential to goal-directed behavior and habit formation. One major form of striatal plasticity, long-term depression (LTD), has long appeared to be expressed only pre-synaptically. Contrary to this view, nitric oxide (NO) generated by striatal interneurons was found to induce a po...

متن کامل

Disruption of endocannabinoid release and striatal long-term depression by postsynaptic blockade of endocannabinoid membrane transport.

Activation of the CB1 cannabinoid receptor inhibits neurotransmission at numerous synapses in the brain. Indeed, CB1 is essential for certain types of both short- and long-term synaptic depression. It was demonstrated recently that CB1 is critical for activity-dependent long-term depression (LTD) at glutamatergic corticostriatal synapses in acute brain slice preparations. Here, we show that CB1...

متن کامل

Abnormal synaptic plasticity in the striatum of mice lacking dopamine D2 receptors.

Dopamine D2 receptors (D2Rs) are of crucial importance in the striatal processing of motor information received from the cortex. Disruption of the D2R gene function in mice results in a severe locomotor impairment. This phenotype has analogies with Parkinson's disease symptoms. D2R-null mice were used to investigate the role of this receptor in the generation of striatal synaptic plasticity. Te...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 14 8  شماره 

صفحات  -

تاریخ انتشار 1994